Stereographic projection from center

Suppose we are doing stereographic projection at the center. Namely consider the following map

\displaystyle \phi:\mathbb{S}^2\rightarrow \mathbb{R}^2

\displaystyle (x,y,z)\mapsto\frac{(u_1,u_2,-1)}{\lambda}

where {\lambda=\sqrt{u_1^2+u_2^2+1}}. Then one can see {u_1=\frac{x}{z}}, {u_2=\frac{y}{z}}. Let us pull the standard metric of {\mathbb{S}^2} to the {\mathbb{R}^2}. For the following statement, we will always omit {\phi^*} and {\phi_*}. Calculation shows,

\displaystyle dx=\left(\frac{1}{\lambda}-\frac{u_1^2}{\lambda^3}\right)du_1-\frac{u_1u_2}{\lambda^3}du_2=z(-1+x^2)du_1+xyzdu_2

\displaystyle dy=-\frac{u_1u_2}{\lambda^3}du_1+\left(\frac{1}{\lambda}-\frac{u_2^2}{\lambda^3}\right)du_2=xyzdu_1+z(-1+y^2)du_2

\displaystyle dz=\frac{1}{\lambda^3}(u_1du_1+u_2du_2)=z^2(xdu_1+ydu_2)


\displaystyle dx^2+dy^2+dz^2=z^2(1-x^2)du_1^2-2xyz^2du_1du_2+z^2(1-y^2)du^2_2

\displaystyle =\frac{1}{\lambda^2}(\delta_{ij}-\frac{u_iu_j}{\lambda^2})du_idu_j

here we used the fact that {(x,y,z)\in \mathbb{S}^2}. Suppose {\bar\nabla} is the connection on {\mathbb{S}^2} equipped with the standard metric. We want to calculate {\bar \nabla_{\partial_{u_i}}\partial_{u_j}}. To that end, it is better to use the {x,y,z} coordinates in {\mathbb{R}^3}

\displaystyle \partial_{u_1}=z(x^2-1)\partial_x+xyz\partial_y+xz^2\partial_z

\displaystyle \partial_{u_2}=xyz\partial_x+z(y^2-1)\partial_y+yz^2\partial_z

Since we know

\displaystyle \bar\nabla_{\partial u_1}\partial_{u_1}=\left(\nabla^{\mathbb{R}^3}_{\partial u_1}\partial_{u_1}\right)^T=\nabla^{\mathbb{R}^3}_{\partial u_1}\partial_{u_1}-\langle\nabla^{\mathbb{R}^3}_{\partial u_1}\partial_{u_1},\partial_r\rangle\partial_r

where {T} means the tangential part to {\mathbb{S}^2} and {\partial_r=x\partial_x+y\partial_y+z\partial_z} is the unit normal to {\mathbb{S}^2}. Using the connection in {\mathbb{R}^3}, we get

\displaystyle \nabla^{\mathbb{R}^3}_{\partial u_1}\partial_{u_1}=z^2\left[3x(x^2-1)\partial_x+y(3x^2-1)\partial_y+z(3x^2-1)\partial_z\right]

\displaystyle \langle\nabla^{\mathbb{R}^3}_{\partial u_1}\partial_{u_1},\partial_r\rangle=z^2(x^2-1)

One can verify from the above equalities that

\displaystyle \bar\nabla_{\partial u_1}\partial_{u_1}=2xz\partial_{u_1}


\displaystyle \bar \nabla_{\partial_{u_1}}\partial_{u_2}=yz\partial_{u_1}+xz\partial_{u_2}

\displaystyle \bar\nabla_{\partial u_2}\partial_{u_2}=2yz\partial_{u_2}


Frist and second variation of translating soliton

Suppose {F(x,t):\Sigma\times(-\epsilon,\epsilon)\rightarrow \mathbb{R}^{n+1}} be a variation of {\Sigma} with compact support and fixed boundary. Consider the weighted area functional

\displaystyle \mathcal{A}(\Sigma)=\int_\Sigma e^{x_{n+1}}dv

What is the critical point of this area functional? To see that,

\displaystyle \frac{\partial}{\partial t}\mathcal{A}(\Sigma)=\int_\Sigma F_t(x_{n+1})e^{x_{n+1}}dv+e^{x_{n+1}}\partial_t dv

From some basic calculation in minimal surface(see colding minicozzi’s book)

\displaystyle \partial_t dv=-\langle F_t,\mathbf{H}\rangle+div_{\Sigma}F_t^T

Stokes’ theorem implies

\displaystyle \int_\Sigma div_\Sigma F_t^Te^{x_{n+1}}dv=-\int_{\Sigma}\langle F_t^T,\nabla_\Sigma x_{n+1}\rangle e^{x_{n+1}}dv=-\int_\Sigma F_t^T(x_{n+1})e^{x_{n+1}}dv

Combining these above fact, we get

\displaystyle \partial_t\mathcal{A}(\Sigma)=\int_\Sigma F_t^{\perp}(x_{n+1})-\langle F_t,\mathbf{H}\rangle dv=\int_\Sigma \langle F_t^{\perp},N\rangle N(x_{n+1})-\langle F_t,\mathbf{H}\rangle dv

\displaystyle =\int_\Sigma \langle F_t,N\rangle \langle N,e_{n+1}\rangle-\langle F_t,\mathbf{H}\rangle dv=\int_\Sigma\langle F_t,\langle N,e_{n+1}\rangle N-\mathbf{H}\rangle dv

where {N} is the unit normal of {\Sigma}. Therefore the critical point of {\mathcal{A}} will satisfy

\displaystyle \mathbf{H}=\langle N, e_{n+1}\rangle N=e_{n+1}^{\perp}

This is so called translating soliton.

Now consider the second variation at a translation soliton,

\displaystyle \partial_t^2\mathcal{A}(\Sigma)=\int_\Sigma e^{x_{n+1}}\left[F_{tt}(x_{n+1})dv+2F_t(x_{n+1})^2dv+2F_t(x_{n+1})\partial_tdv+\partial_{tt}dv\right]

\displaystyle =\int_\Sigma e^{x_{n+1}}\left[F_{tt}(x_{n+1})dv+\partial_{tt}dv\right]


\displaystyle \partial_{tt}dv=-|\langle A(\cdot,\cdot),F_t\rangle|^2+|\nabla_\Sigma^NF_t|^2+div_\Sigma(F_{tt})

Suppose {F_t=\eta N}, where {\eta\in C_c^\infty(\Sigma)}, then {|\nabla_\Sigma^NF_t|^2=|\nabla \eta|^2}

\displaystyle \partial_t^2\mathcal{A}(\Sigma)=\int_\Sigma [|\nabla\eta|^2-|A|^2\eta^2]e^{x_{n+1}}dv

Scalar curvature of cylinder

Consider the scalar curvature {R_g} of a cylinder {\mathbb{R}\times \mathbb{S}^{n-1}} with the standard product metric {g_{prod}}, where {n\geq 2}.

First approach, the cylinder is diffeomorphic to the puncture plane,

\displaystyle \phi:\mathbb{R}^n\backslash\{0\}\longmapsto \mathbb{R}\times \mathbb{S}^{n-1}

\displaystyle x\rightarrow (\log|x|,\frac{x}{|x|})

It is easy to verify that {(\phi^{-1})^*g_{prod}=|x|^{-2}|dx|^2}. One can calculate {R_g} from the conformal change formula

\displaystyle R_g=-\frac{4(n-1)}{n-2}|x|^{-\frac{n+2}{2}}\Delta |x|^{-\frac{n-2}{2}}=(n-2)(n-1)

Second approach, remember the Ricci curvature splits on product manifold with product metric. Therefore

\displaystyle R_g=R_{g_{S^n}}=(n-2)(n-1)

From the above, we know that if {n=2}, then {R_g=0} while {R_g>0} if {n\geq 3}. I always get confused with this two cases. There is a nice way to see this result for {n=2}. {\mathbb{S}^1\times \mathbb{R}} can be covered locally isometrically by {\mathbb{R}^2} with Euclidean metric. Therefore {R_g=0} in this case. However, {\mathbb{R}^n} should cover {\mathbb{S}^1\times \mathbb{R}^{n-1}} instead of {\mathbb{R}\times \mathbb{S}^{n-1}}.

Cylinder, Puncture plane and Cone

Suppose \phi: \mathbb{R}^n-\{0\}\longmapsto \mathbb{R}\times S^{n-1} defined by \phi(x)=(\log|x|,\frac{x}{|x|}). Use (t,\xi) denote the points on \mathbb{R}\times S^{n-1}, then

\displaystyle dt=\frac{x_i}{|x|^2}dx^i,\quad d\xi^i=\frac{dx^i}{|x|}-\frac{x_ix_j}{|x|^3}dx^j

This means

\displaystyle dt^2+d\xi^2=\frac{1}{|x|^2}|dx|^2

then \phi is a conformal diffeomorphism from (\mathbb{R}^n-\{0\},|dx|^2) to (\mathbb{R}\times S^{n-1}, dt^2+d\xi^2). Suppose g is a conic metric such that g(x)=|x|^\beta|dx|^2 on \mathbb{R}^n-\{0\}. Thus (\mathbb{R}^n-\{0\},g) is isometric to (\mathbb{R}\times S^{n-1},e^{t(2+\beta)}(dt^2+d\xi^2)) through \phi. Therefore Y(\mathbb{R}^n-\{0\},[g])=Y(\mathbb{R}\times S^{n-1},[dt^2+d\xi^2]). It is easy to see that Y(\mathbb{R}\times S^{n-1},[dt^2+d\xi^2])=Y(S^{n}) because

\displaystyle g_{S^n}=\frac{4}{(1+|x|^2)}|dx|^2=(\cosh t)^{-2}(dt^2+d\xi^2)

Bach flat four dimensional manifold and sigma2 functional

We want to find the necessary condition of being the critical points of {\int\sigma_2} on four dimensional manifold.

1. Preliminary

Suppose {(M^n,g)} is a Riemannian manifold with {n=4}. {P_g} is the Schouten tensor

\displaystyle P_g=\frac{1}{n-2}\left(Ric-\frac{R}{2(n-1)}g\right)

and denote {J=\text{\,Tr\,} P_g}. Define

\displaystyle \sigma_2(g)=\frac{1}{2}[(\text{\,Tr\,} P_g)^2-|P_g|_g^2]

\displaystyle I_2(g)=\int_M \sigma_2(g)d\mu_g

where {|P|_g^2=\langle P,P\rangle_g}. It is well known that {I_2(g)} is conformally invariant.

Suppose {g(t)=g+th} where {h} is a symmetric 2-tensor. We want to calculate the first derivative of {I_2(g(t))} at {t=0}. To that end, let us list some basic facts (see the book of Toppings). Firstly denote {(\delta h)_j=-\nabla^i{h_{ij}}} the divergence operator and

\displaystyle G(h)=h-\frac{1}{2}(\text{\,Tr\,} h) g

\displaystyle (\Delta_L h)_{ij}=(\Delta h)_{ij}-h_{ik}Ric_{jl}g^{kl}-h_{jk}Ric_{il}g^{kl}+2R_{ikjl}h^{kl}

where {\Delta_L} is the Lichnerowicz Laplacian. Then the first variation of Ricci curvature and scalar curvature are

\displaystyle \dot{R}=\delta^2h-\Delta(\text{\,Tr\,} h)-\langle h,Ric\rangle \ \ \ \ \ (1)

\displaystyle \dot{Ric}=-\frac{1}{2}\Delta_Lh-\frac{1}{2}L_{(\delta G(h))^\sharp}g=-\frac{1}{2}\Delta_Lh-\frac{1}{2}L_{(\delta h)^\sharp}g-\frac{1}{2}Hess(\text{\,Tr\,} h)

\displaystyle =-\frac{1}{2}\Delta_Lh-d(\delta h)-\frac{1}{2}Hess(\text{\,Tr\,} h)

where we were using upper dot to denote the derivative with respect to {t}.

2. First variation of the sigma2 functional

Lemma 1 {(M^4,g)} is a critical point of {I_2(g)} if and only if

\displaystyle \Delta P-Hess(J)+2\mathring{Rm}(P)-2JP-|P|_g^2g=0 \ \ \ \ \ (2)

where {(\mathring{Rm}(P))_{ij}=R_{ikjl}P^{kl}}.


\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\int_M J\dot J-\langle\dot P,P\rangle+\langle h,P\wedge P\rangle+\frac{1}{2}\sigma_2\text{\,Tr\,} h \,d\mu_g

where {(P\wedge P)_{ij}=P_{ik}P_{jl}g^{kl}}. Since we have

\displaystyle \int_M\langle P,\dot P\rangle\\ =\frac{1}{n-2}\int_M\langle P, \dot Ric-\dot Jg-Jh\rangle =\frac{1}{n-2}[\langle P, \dot Ric\rangle-\dot J J-J\langle h,P\rangle]

\displaystyle =\frac{1}{n-2}[-\frac{1}{2}\langle h,\Delta_L P\rangle+\langle h,Hess(J)\rangle-\frac{1}{2}\Delta J \text{\,Tr\,} h-\dot J J-J\langle h,P\rangle]

Plugging this into the derivative of {I_2} to get

\displaystyle (n-2)\frac{d}{dt}\big|_{t=0} I_2(g(t))\\ =\int_M\frac{1}{2}\langle h,\Delta_L P\rangle-\langle h,Hess(J)\rangle+\frac{1}{2}\Delta J \text{\,Tr\,} h\\

\displaystyle \quad +(n-1)\dot J J+J\langle h,P\rangle+(n-2)\langle h,P\wedge P\rangle+\frac{n-2}{2}\sigma_2\text{\,Tr\,} h d\mu_g

In order to simplify the above equation, we recall the definition of Lichnerowicz Laplacian {\Delta_L}

\displaystyle (\Delta_LP)_{ij}=(\Delta P)_{ij}-2P_{ik}Ric_{jl}g^{kl}+2R_{ikjl}P^{kl}

\displaystyle =(\Delta P)_{ij}-2(n-2)P_{ik}P_{jl}g^{kl}-2JP_{ij}+2R_{ikjl}P^{kl}

Apply (1) to get

(n-1)\dot J J=\frac12J\dot R=\frac12J[\delta^2h-\Delta(\text{\,Tr\,} h)-\langle h,Ric\rangle]
=\frac{1}{2}[\langle h, Hess(J)\rangle-\text{\,Tr\,} h\Delta J-(n-2)J\langle h, P\rangle-J^2\text{\,Tr\,} h]

Therefore we can simplify it to be

\displaystyle (n-2)\frac{d}{dt}\big|_{t=0} I_2(g(t)) =\int_M\frac{1}{2}\langle h,\Delta P\rangle-\frac{1}{2}\langle h, Hess(J)\rangle+h^{ij}R_{ikjl}P^{kl}

\displaystyle -\frac{n-2}{2}J\langle h,P\rangle-\frac{1}{2} J^2 \text{\,Tr\,} h+\frac{n-2}{2}\sigma_2\text{\,Tr\,} h d\mu_g

Let us denote {(\mathring{Rm}(P))_{ij}=R_{ikjl}P^{kl}}. Using the fact {n=4} and the definition of {\sigma_2},

\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\frac{1}{4}\int_M\langle h,Q\rangle d\mu_g


\displaystyle Q=\Delta P-Hess(J)+2\mathring{Rm}(P)-2JP-|P|_g^2g


Remark 1 It is easy to verify {\text{\,Tr\,} Q=0}, this is equivalent to say {I_2} is invariant under conformal change. More precisely, letting {h=2ug}, then

\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\frac{1}{4}\int_M\langle h,Q\rangle d\mu_g=\frac{1}{2}\int_M u\text{\,Tr\,} Q d\mu_g=0.

Remark 2 If {g} is an Einstein metric with {Ric=2(n-1)\lambda g}, then {P=\lambda g}, {J=n\lambda} and

\displaystyle \mathring{Rm}(P)=\lambda Ric=2(n-1)\lambda^2 g

It is easy to verify that {Q=0}. In other words, Einstein metrics are critical points of {I_2}.

Are there any non Einstein metric which are critical points of {I_2}?

Here is one example. Suppose {M=\mathbb{S}^2\times N}, where {\mathbb{S}^2} is the sphere with standard round metric and {(N,g_N)} is a two dimensional compact manifolds with sectional curvature {-1}. {M} is endowed with the product metric. We can prove {Ric=g_{S^2}-g_N}, {P=\frac{1}{2}g_{S^2}-\frac{1}{2}g_N}, {J=0}, {\mathring{Rm}(P)=g_{prod}} and consequently {Q=0}.

Note that the above example is a locally conformally flat manifold. For this type of manifold, we have the following lemma which can say

Lemma 2 Suppose {g} is locally conformally flat and {Q=0}, then

Proof: When {g} is locally conformally flat,

\displaystyle \mathring{Rm}(g)=JP+|P|_g^2g-2P\wedge P

{Q=0} is equivalent to

\displaystyle \Delta P-Hess(J)+|P|_g^2g-4P\wedge P=0

Actually this is equivalent to the Bach tensor {B} is zero. \Box

3. Another point of view

We have the Euler Characteristic formula for four dimensional manifolds

\displaystyle 8\pi^2\chi(M)=\int_M (|W|_g^2+\sigma_2) d\mu_g

therefore the critical points for {\int_M \sigma_2d\mu_g} will be the same as the critical points of {\int_M |W|_g^2d\mu_g}. However, the functional

\displaystyle g\rightarrow \int_M |W|_g^2d\mu_g

is well studied by Bach. The critical points of this functional satisfy Bach tensor equal to 0.

\displaystyle B_{ij}=\nabla^k\nabla^l W_{likj}+\frac{1}{2}Ric^{kl}W_{likj}

Obviously, {B=0} for Einstein metric, but not all Bach flat metrics are Einstein. For example {B=0} for any locally conformally flat manifolds.

Bubble functions under different setting

Bubble function can be defined either on \mathbb{R}^n, \mathbb{S}^n or \mathbb{B}^n. For the following notations, c_n will denote suitable constants which may be different from line to line.

  • For every \epsilon>0 and  \xi\in\mathbb{R}^n, define

\displaystyle u_{\epsilon,\xi}=c_n\left(\frac{\epsilon}{\epsilon^2+|x-\xi|^2}\right)^{\frac{n-2}{2}}

It is well know that -\Delta u= c_nu^{\frac{n+2}{n-2}}. Moreover (\mathbb{R}^n,u^{\frac{4}{n-2}}_{\epsilon,\xi}g_E) is isometric to the standard sphere minus one point.

  • For any a\in \mathbb{S}^n and \lambda>0 define

\displaystyle\delta(a,\lambda)=c_n\left(\frac{\lambda}{\lambda^2+1+(\lambda^2-1)\cos d(a,x)}\right)^{\frac{n-2}{2}}

where d(a,x) is the geodesic distance of a and x on \mathbb{S}^n. Actually \cos d(a,x)=a\cdot x

  • For each p\in \mathbb{B}^{n+1}, define \delta_p(x):\mathbb{S}^n\to \mathbb{R} by


Both the second and third one satisfy

\displaystyle \frac{4(n-1)}{n-2}\Delta_{\mathbb{S}^n}\delta-n(n-1)\delta+c_n\delta^{\frac{n-2}{n+2}}=0

If we make p=\frac{\lambda-1}{\lambda+1}a, the third one will be changed to the second one.

To get the second one from the first one, let us deonte \Phi_a:\mathbb{S}^n\to \mathbb{R}^n be the stereographic projection from point a. Then

\displaystyle \delta(a,\lambda)\circ \Phi^{-1}_a=c_n\left(\frac{\lambda(1+|y|^2)}{\lambda^2|y|^2+1}\right)^{\frac{n-2}{2}}=c_nu_{\lambda,0}u_{1,0}^{-1}

It should be able to see the third one from hyperbolic translation directly.

Unique continuation property on the boundary

I am writing a theorem proved by Jin Zhiren in his thesis.


Suppose \Omega is a smooth domain in \mathbb{R}^n, x_0\in \partial \Omega and u is a harmonic function in \Omega. If there exists A, b>0 such that

\displaystyle |u(x)|\leq Ae^{-\frac{b}{|x-x_0|}}\quad x\in \Omega

for |x-x_0| small, then u=0. If n=2, the same conclusion holds for the solutions of a general second order linear elliptic equation.

A borderline example for this theorem is u be the real part of e^{-1/z^\alpha}, \alpha\in (0,1). u is harmonic in the right half plane and u\leq Ae^{-1/|x|^\alpha} and consequently D^\beta u(0)=0.





Interior estimate for Monge Ampere equation

Suppose we have u is a generalized solution of the Monge-Ampere equation

\det(\nabla^2 u)=1 \text{ in } B_1\subset\mathbb{R}^n

when n=2, Heinz proved

    |\nabla^2 u|_{B_{1/2}}\leq \sup_{B_1}u

when n\geq 3, Pogorelov has a counter example. One can have a solution u\in C^1(B_1), but u\in C^{1,\beta}(B_1) for some \beta\in (0,1). See his book The Minkowski Multidimensional Problem, on page 83.

Newton tensor

Suppose {A:V\rightarrow V} is a symmetric endomorphism of vector space {V}, {\sigma_k} is the {k-}th elementary symmetric function of the eigenvalue of {A}. Then

\displaystyle \det(A+tI)=\sum_{k=0}^n \sigma_k t^{n-k}

One can define the {k-}th Newton transformation as the following

\displaystyle \det(A+tI)(A+tI)^{-1}=\sum_{k=0}^{n-1}T_k(A)t^{n-k-1}

This means

\displaystyle \det(A+tI)=\sum_{k=0}^{n-1}T_k(A+tI)t^{n-k-1}

\displaystyle =T_0 t^n+\sum_{k=0}^{n-2}(A\cdot T_k(A)+T_{k+1}(A))t^{n-k-1}+T_{n-1}(A)

By comparing coefficients of {t}, we get the relations of {T_k}

\displaystyle T_0=1,\quad A\cdot T_k(A)+T_{k+1}(A)=\sigma_{k+1}I,\, 0\leq k\leq n-2\quad T_{n-1}(A)=\sigma_n

Induction shows

\displaystyle T_{k}(A)=\sigma_kI-\sigma_{k-1}A+\cdots+(-1)^kA^k

For example

\displaystyle T_1(A)=\sigma_1I-A

\displaystyle T_2(A)=\sigma_2-\sigma_1A+A^2

One of the important property of Newton transformation is that: Suppose {F(A)=\sigma_k(A)}, then

\displaystyle F^{ij}=\frac{\partial F}{\partial A_{ij}}=T_{k-1}^{ij}(A)

The is because

\displaystyle \frac{\partial }{\partial A_{ij}}\det(A+tI)=\det(A+tI)((A+tI)^{-1})_{ij}.

If {A\in \Gamma_k}, then {T_{k-1}(A)} is positive definite and therefore {F} is elliptic.

Remark: Hu, Z., Li, H. and Simon, U. . Schouten curvature functions on locally conformally flat Riemannian manifolds. Journal of Geometry, 88(1{-}2), (2008), 75{-}100.

Self-shrinker and polynomial volume growth

Proposition: If M is an entire graph of at most polynomial volume growth and H=\langle X,\nu\rangle, namely M is a self-shrinker. Then M is a plane.

Proof: Suppose

\displaystyle v=\frac{1}{\langle \nu, w\rangle}

Then one can derive the following equation

\displaystyle \Delta v=\langle\nabla v,X\rangle+|A|^2v+2v^{-1}|\nabla v|^2

Multiplying both sides by e^{-|X|^2/2} and integration on M, which makes sense because of the polynomial volume growth, we get

\int_M (\Delta v-\langle\nabla v,X\rangle)e^{-\frac{|X|^2}{2}}d\mu=\int_M (|A|^2v+2v^{-1}|\nabla v|^2)e^{-\frac{|X|^2}{2}}d\mu

However, integration by parts shows the LHS is zero. Thus A\equiv v\equiv 0, M must be a plane.