Second fundamental form of hypersurface

\mathbf{Problem:} Suppose F:\Omega\to \mathbb{R}^{n+1} is an embedding map. \Omega\subset\mathbb{R}^nis an open set.

\displaystyle \overline{\nabla}_XY=\nabla_XY+h(X,Y)\nu,

\nu is the outer normal vector.

\displaystyle \overline{\nabla}_X\nu=-A(X)

Then the second fundamental form of M is B=h_{ij}\partial_iF\otimes\partial_j F, where

\displaystyle h_{ij}=h(\partial_iF,\partial_jF)=\langle A(\partial_iF),\partial_jF\rangle_g=-\langle \displaystyle \overline{\nabla}_{\partial_iF}\nu,\partial_jF\rangle_g

Extend \partial_iF=F_*(\frac{\partial}{\partial u^i}) and \nu to a vector field X and Y on \mathbb{R}^{n+1}

\displaystyle X^A\big|_{F(p)}=\frac{\partial F^A}{\partial u^i}\bigg|_p, \displaystyle Y^A\big|_{F(p)}=\nu^A\big|_{F(p)}

\displaystyle \overline{\nabla}_{\partial_iF}\nu\big|_{F(p)}=\overline{\nabla}_{X}Y\big|_{F(p)}=X^A\frac{\partial}{\partial x^A}\left(Y^B\right)\frac{\partial}{\partial x^B}\bigg|_{F(p)}=\frac{\partial F^A}{\partial u^i}\bigg|_{p}\frac{\partial}{\partial x^A}\left(\nu^B\right)\bigg|_{F(p)}\frac{\partial}{\partial x^B}\bigg|_{F(p)}

Note the fact that \displaystyle \partial_i\nu^B=\frac{\partial}{\partial u^i}\nu^B=\frac{\partial}{\partial x^A}\left(\nu^B\right)\bigg|_{F(p)}\frac{\partial F^A}{\partial u^i}\bigg|_{p}, we get

\displaystyle \overline{\nabla}_{\partial_iF}\nu\big|_{F(p)}=\partial_i\nu^B\frac{\partial}{\partial x^B}=\partial_i \nu

\displaystyle h_{ij}=-\langle \partial_i\nu,\partial_jF\rangle_g=-\partial_i\nu\cdot \partial_jF

\text{Q.E.D}\hfill \square

\mathbf{Remark:}see the notation on https://sunlimingbit.wordpress.com/2013/02/10/tangential-gradient-on-the-hypersurface/

Advertisements
Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: