## Bubble functions under different setting

Bubble function can be defined either on $\mathbb{R}^n$, $\mathbb{S}^n$ or $\mathbb{B}^n$. For the following notations, $c_n$ will denote suitable constants which may be different from line to line.

• For every $\epsilon>0$ and  $\xi\in\mathbb{R}^n$, define

$\displaystyle u_{\epsilon,\xi}=c_n\left(\frac{\epsilon}{\epsilon^2+|x-\xi|^2}\right)^{\frac{n-2}{2}}$

It is well know that $-\Delta u= c_nu^{\frac{n+2}{n-2}}$. Moreover $(\mathbb{R}^n,u^{\frac{4}{n-2}}_{\epsilon,\xi}g_E)$ is isometric to the standard sphere minus one point.

• For any $a\in \mathbb{S}^n$ and $\lambda>0$ define

$\displaystyle\delta(a,\lambda)=c_n\left(\frac{\lambda}{\lambda^2+1+(\lambda^2-1)\cos d(a,x)}\right)^{\frac{n-2}{2}}$

where $d(a,x)$ is the geodesic distance of $a$ and $x$ on $\mathbb{S}^n$. Actually $\cos d(a,x)=a\cdot x$

• For each $p\in \mathbb{B}^{n+1}$, define $\delta_p(x):\mathbb{S}^n\to \mathbb{R}$ by

$\displaystyle\delta_p(x)=c_n\left(\frac{1-|p|^2}{|x+p|^2}\right)^{\frac{n-2}{2}}$

Both the second and third one satisfy

$\displaystyle \frac{4(n-1)}{n-2}\Delta_{\mathbb{S}^n}\delta-n(n-1)\delta+c_n\delta^{\frac{n-2}{n+2}}=0$

If we make $p=\frac{\lambda-1}{\lambda+1}a$, the third one will be changed to the second one.

To get the second one from the first one, let us deonte $\Phi_a:\mathbb{S}^n\to \mathbb{R}^n$ be the stereographic projection from point $a$. Then

$\displaystyle \delta(a,\lambda)\circ \Phi^{-1}_a=c_n\left(\frac{\lambda(1+|y|^2)}{\lambda^2|y|^2+1}\right)^{\frac{n-2}{2}}=c_nu_{\lambda,0}u_{1,0}^{-1}$

It should be able to see the third one from hyperbolic translation directly.