## One example of blowing up corner

Consider ${u(x,y)=\sqrt{x^2+y^4}}$ on ${\mathbb{R}^2_+=\{(x,y):x\geq 0, y\geq 0\}}$. Notify ${\mathbb{R}^2_+}$ has a corner at the origin and ${u}$ is not smooth at the origin. ${u\approx x}$ when ${x\geq y^2}$ and ${u\approx y^2}$ when ${x\leq y^2}$. We want to resolve ${u}$ by blowing up the origin through a map ${\beta}$. After blowing up, ${W}$ looks like the following picture.

Denote ${W=[\mathbb{R}^2_+,(0,0)]}$ and ${\beta:W\rightarrow \mathbb{R}^2_+}$ is the blow down map. On ${W\backslash lb}$(near A), ${\beta}$ takes the form

$\displaystyle \beta_1(\xi_1,\eta_1)=(\xi_1^2,{\xi_1\eta_1})$

where ${\xi_1}$ is the boundary defining function for ff and ${\eta_1}$ is boundary defining function for rb. Similarly on ${W\backslash rb}$(near B), ${\beta}$ takes the form

$\displaystyle \beta_2(\xi_2,\eta_2)=(\xi_2\eta^2_2,\eta_2)$

where ${\xi_2}$ is a bdf for lb and ${\eta_2}$ is a bdf for ff. One can verify that ${\beta}$ is a diffeomorphism ${\mathring{W}\rightarrow \mathring{\mathbb{R}}^2_+}$. Let ${w=\beta^* u}$. Then ${w}$ is a polyhomogeneous conormal function on ${W}$. Its index can be denoted ${(E,F,H)}$ correspond to lb, ff and rb.

$\displaystyle E=\{(n,0)\}, F=\{(2n,0)\}, H=\{(2n,0)\}$

Suppose ${\pi_1}$ is the projection to ${x}$ coordinate. Consider ${f=\pi_1\circ \beta:W\rightarrow \mathbb{R}_+}$, ${f}$ is actually a ${b-}$fibration. Then the push forward map ${f_*}$ maps ${w}$ to a polyhomogeneous function on ${\mathbb{R}^+}$.

$\displaystyle f_*w=\pi_* u=\int_0^\infty u(x,y)dy$

In order to make ${u}$ is integrable, let us assume ${u}$ support ${x\leq 1}$ and ${y\leq 1}$. What is the index for ${f_* w}$ on ${\mathbb{R}^+}$?

$\displaystyle \int_0^1\sqrt{x^2+y^4}dy=\int_0^{\sqrt{x}}\sqrt{x^2+y^4}dy+\int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy$

For the first integral, letting ${y^2/x=t}$

$\displaystyle \int_0^{\sqrt{x}}\sqrt{x^2+y^4}dy=x\sqrt{x}\int_0^1\sqrt{1+t^4}dt=c_0x\sqrt{x}$

For the second integral, letting ${x/y^2=t}$

$\displaystyle \int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy=\frac{1}{2}x\sqrt{x}\int_x^1t^{-\frac{5}{2}}\sqrt{t^2+1}dt$

Since the Taylor series

$\displaystyle \sqrt{1+t^2}=1+\frac{1}{2}t^2-\frac{1}{8}t^4+\cdots,\quad \text{for }|t|<1$

Consequently

$\displaystyle \int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy=a_0+a_1x+a_2x\sqrt{x}+\cdots$

Combining all the above analysis, the index for ${f_*w}$ is ${\{(n,0)\}\cup \{\frac{n}{2},0\}}$

From another point of view, the vanishing order of ${f}$ on each boundary hypersurface of ${W}$ are ${e_f(lb)=1}$, ${e_f(\text{ff})=2}$ and ${e_f(rb)=0}$. ${f}$ maps lb and ff to the boundary of ${\mathbb{R}^+}$. Therefore the index of ${f_*w}$ is contained in

$\displaystyle \frac{1}{e_f(lb)}E\overline{\cup}\frac{1}{e_f(\text{ff})}F=E\overline{\cup}\frac{1}{2}F$

Remark: Daniel Grieser, Basics of ${b-}$Calculus.