Hessian of radial functions

Suppose {u=u(r)} is a radial function on {\mathbb{R}^n}, here {r=|x|}.

\displaystyle u_{x_i}=u'\frac{x_i}{r}

\displaystyle u_{x_ix_j}=u''\frac{x_ix_j}{r^2}+u'(\frac{\delta_{ij}}{r}-\frac{x_ix_j}{r^3})=\frac{u'}{r}\delta_{ij}+(\frac{u''}{r^2}-\frac{u'}{r^3})x_ix_j


\displaystyle \det D^2u = \left(\frac{u'}{r}\right)^{n}\det[ \delta_{ij}+\frac{r}{u'}(u''-\frac{u'}{r})\frac{x_ix_j}{r^2}]

\displaystyle =\left(\frac{u'}{r}\right)^{n}[1+\frac{r}{u'}(u''-\frac{u'}{r})]=\left(\frac{u'}{r}\right)^{n-1}u''

If we use the polar coordinates {(r,\theta_1,\cdots, \theta_{n-1})}, and {g=dr^2+r^2\sum_{i=1}^{n-1}d\theta_i^2} and the following fact

\displaystyle \nabla_X\partial_r=\begin{cases}\frac{1}{r}X&\text{if } X\text{ is tangent to }\mathbb{S}^{n-1}\\0 \quad &\text{if } X=\partial_r\end{cases}

then one can calculate the Hessian of {u} under this coordinates

\displaystyle Hess (u)(\partial_r,\partial_r)=u''

\displaystyle Hess (u)(\partial_{\theta_i},\partial_r)=0

\displaystyle Hess (u)(\partial_{\theta_i},\partial_{\theta_j})=ru'\delta_{ij}.


\displaystyle \frac{\det Hess (u)}{{\det g}}=\left(\frac{u'}{r}\right)^{n-1}u''

If the metric is g=dr^2+\phi^2ds_{n-1}^2, then we will have

\displaystyle \frac{\det Hess (u)}{{\det g}}=\left(\frac{u'\phi'}{\phi}\right)^{n-1}u''

Post a comment or leave a trackback: Trackback URL.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: