Category Archives: PDE


A negative gradient flow under constraint

Suppose we have two C^1 functionals J and L on a Hilbert space H. Suppose we want to have a flow u(t) such that along the flow J(u(t)) decrease and L(u(t)) remains the same.

Suppose \nabla L(u)\neq 0, for any u\in H, which means that \mathcal{C}=\{u:L(u)=C\} is a regular hypersurface of H. Define the unit normal vector field

\displaystyle N(u)=\frac{\nabla u}{||\nabla u||_H}


\displaystyle \nabla^{\mathcal{C}}J=\nabla J-\langle \nabla J,N \rangle N

Then it is easy to the flow \partial_t u=-\nabla^{\mathcal{C}}J will satisfy our request.

For example let P_{g_0} be the Paneitz operator of fourth order. Assume it is a positive operator. Define

H=W^{2,2}\text{ with norm }||u||_H^2=\int uP_{g_0}ud\mu_0

Choose our L(u)=||u||_H and J(u)=-\frac{n-4}{2n}\int |u|^{\frac{2n}{n-4}}d\mu_0

then \nabla L(u)=u and \nabla J(u)=-P_{g_0}^{-1}|u|^{\frac{n+4}{n-4}}. Consequently

\nabla^{\mathcal{C}}J=-P_{g_0}^{-1}|u|^{\frac{n+4}{n-4}}+\frac{\int |u|^{\frac{2n}{n-4}}d\mu_0}{||u||_H^2}u

Then one may have the following flow

\displaystyle \partial_t u=-u+\mu P_{g_0}^{-1}(|u|^{\frac{n+4}{n-4}})

where \mu=||u||_H^2/\int |u|^{\frac{2n}{n-4}}d\mu_0.

P. Baird, A. Fardoun, R. Regbaoui, Calculus of Variations Q-curvature flow on 4-manifolds, 27 (2006) 75–104.

M. Gursky, A. Malchiodi, A strong maximum principle for the Paneitz operator and a non-local flow for the $Q$-curvature, J. Eur. Math. Soc. 17 (2015) 2137–2173.

Some calculation of sigma2 II

We want find the critical metric of the following functional restricted to the space of conformal metrics of unit volume 

\displaystyle I(g)=\frac{n-4}{2}t\int_M J^2_gd\mu_g+4\int_M\sigma_2(A_g)d\mu_g

Here {(M^n,g)} is a Riemannian metric with {n\geq 5}, {A} is the Schouten tensor and {J} is {tr_gA}.

Now let us differentiate the two terms respectively, suppose {g(s)=(1+s\psi)^{\frac{4}{n-4}}g=u(s)^{\frac{4}{n-2}}g}. From conformal change property of scalar curvature, we get 

\displaystyle J_{g(s)}=u(s)^{-\frac{n+2}{n-2}}\left(-\frac{2}{n-2}\Delta_{g}u(s)+Ju(s)\right)

\displaystyle \dot J=-\frac{2}{n-2}\Delta_g\dot u-\frac{4}{n-2}J\dot u


\displaystyle \frac{d}{ds}|_{t=0}\int_{M}J_{g(s)}^2d\mu_{g(s)}=\int_{M}2J\dot{J}+\frac{2n}{n-2}J^2\dot ud\mu

\displaystyle =\int_M -\frac{4}{n-2}J\Delta \dot u+\frac{2(n-4)}{n-2}J^2\dot ud\mu

\displaystyle =\int_M\left(-\frac{4}{n-4}\Delta J+2J^2\right)\psi d\mu

where we have used the fact {\dot u(0)=\frac{n-2}{n-4}\psi}. Next, it is easy to know 

\displaystyle \frac{d}{ds}|_{t=0}\int_M \sigma_2(A_{g(s)})d\mu_{g(s)}=2\int_{M}\sigma_2(A)\psi d\muSo 

\displaystyle I'(g)\psi=2t\int_{M}\left(-\Delta J+\frac{n-4}{2}J\right)\psi d\mu_g+8\int_{M}\sigma_2(A)\psi d\mu_g

Now assume {g(s)} keep the unit volume infinitesimally, that is {\int_M \psi d\mu=0}, then {I'(g)=0} under this constraint means 

\displaystyle t\left(-\Delta J+\frac{n-4}{2}J\right)+4\sigma_2(A)=const.

Remark: M.J. Gursky, F. Hang, Y.-J. Lin, Riemannian Manifolds with Positive Yamabe Invariant and Paneitz Operator, Int. Math. Res. Not.

Concavity maximum principle

Let u\in C^2(\Omega)\cap C(\bar{\Omega}) satisfy the elliptic equation

\displaystyle Lu=a^{ij}(Du)u_{ij}-b(x,u,Du)=0\quad \text{in }\Omega

Assume b is jointly concave with respect to (x,u) and

\displaystyle \frac{\partial b}{\partial u}\geq 0


\mathcal{C}(y_1,y_3,\lambda)=u(\lambda y_3+(1-\lambda)y_1)-\lambda u(y_3)-(1-\lambda)u(y_1)

can not achieve positive maximum in the interior of \Omega\times \Omega.

See the paper Korevaar 1983

Some identities related to mean curvature of order m

For any {n\times n} (not necessarily symmetric) matrix {\mathcal{A}}, we let {[\mathcal{A}]_m} denote the sum of its {m\times m} principle minors. For any hypersurface which is a graph of {u\in C^2(\Omega)}, where {\Omega\subset \mathbb{R}^n}. We have its downward unit normal is

\displaystyle (\nu,\nu_{n+1})=\left(\frac{Du}{\sqrt{1+|Du|^2}},\frac{-1}{\sqrt{1+|Du|^2}}\right).

The principle curvatures are taken from the eigenvalues of the Jacobian matrix {[D\nu]}. One can define its {m} mean curvature using the notation of above

\displaystyle H_m=\sum_{i_1<\cdots<i_m}\kappa_{i_1}\cdots\kappa_{i_m}=[D\nu]_m

Now let us consider general matrix {\mathcal{A}},

\displaystyle A_m=[\mathcal{A}]_m=\frac{1}{m!}\sum \delta\binom{i_1,\cdots,i_m}{j_1,\cdots,j_m}a_{i_1j_1}\cdots a_{i_mj_m}

where {\delta} is the generalized Kronecker delta.

\displaystyle \delta\binom{i_1 \dots i_p }{j_1 \dots j_p} = \begin{cases} +1 & \quad \text{if } i_1 \dots i_p \text{ are distinct and an even permutation of } j_1 \dots j_p \\ -1 & \quad \text{if } i_1 \dots i_p \text{ are distinct and an odd permutation of } j_1 \dots j_p \\ \;\;0 & \quad \text{in all other cases}.\end{cases}

Then we define the Newton tensor

\displaystyle T^{ij}_m=\frac{\partial A_m}{\partial a_{ij}}=\frac{1}{(m-1)!}\sum\delta\binom{i,i_2 \dots i_m }{j,j_2 \dots j_m}a_{i_2j_2}\cdots a_{i_m j_m}.

For any vector field {X} on {\mathbb{R}^n}, {DX} is a matrix, where {D=(D_{1},\cdots,D_n)} and {|X|\neq 0}, denote {\tilde X=X/|X|}, we have

\displaystyle (m-1)!T^{ij}_m(DX)X_iX_j=\sum\delta\binom{i,i_2 \dots i_m }{j,j_2 \dots j_m}X_iX_j[D_{i_2}X_{j_2}]\cdots [D_{i_m}X_{j_m}].

Since for any {1\leq p,k,l\leq n}

\displaystyle D_k\tilde X_l=\frac{D_kX_{l}}{|X|}-\frac{\sum_{p=1}^nX_pD_kX_pX_l}{|X|^3}

\displaystyle \sum_{i,j,i_2,j_2}\delta\binom{i,i_2 \dots i_m }{j,j_2 \dots j_m}X_iX_jX_pX_{j_2}D_{i_2}X_p=0

because \delta is skew-symmetric in j,j_2. Then

\displaystyle (m-1)!T^{ij}_m(DX)X_iX_j=|X|^{m-1}\sum\delta\binom{i,i_2 \dots i_m }{j,j_2 \dots j_m}X_iX_j[D_{i_2}\tilde X_{j_2}]\cdots [D_{i_m}\tilde X_{j_m}].

=(m-1)!|X|^{m-1}T_m^{ij}(D\tilde X)X_iX_j=(m-1)!|X|^{m+1}T_m^{ij}(D\tilde X)\tilde X_i\tilde X_j.

Applying the formula (T^{ij}_m(\mathcal{A}))=[\mathcal{A}]_{m-1}I-T_{m-1}(\mathcal{A})\cdot \mathcal{A}(Check [1] Propsition 1.2) and (D\tilde X)\tilde X=0, we get

T^{ij}_m(DX)X_iX_j=|X|^{m+1}[D\tilde X]_{m-1}

It follows from the result of Reilly, Remark 2.3(a), that

\displaystyle mA_m[DX]=D_i[T^{ij}_mX_j]

Suppose {X} is a vector field normal to {\partial \Omega}, then

\displaystyle m\int_\Omega [DX]_m=\int_{\partial \Omega} T^{ij}_m X_j\gamma_i=\int_{\partial \Omega}(X\cdot \gamma)^m[D\gamma]_{m-1}=\int_{\partial \Omega} (X\cdot \gamma)^m H_{m-1}(\partial \Omega)

where {\gamma} is the outer ward unit normal to {\partial \Omega}.

Remark: [1] R.C. Reilly, On the Hessian of a function and the curvatures of its graph., Michigan Math. J. 20 (1974) 373–383. doi:10.1307/mmj/1029001155.

[2] N. Trudinger, Apriori bounds for graphs with prescribed curvature.


We probably have to assume DX is a symmetric matrix in order to use the formula of Reilly. Not sure about this.

Unit normal to a radial graph over sphere

Consider \Omega\subset \mathbb{S}^n is a domain in the sphere. S is a radial graph over \Omega.

\boldsymbol{F}(x)=\{v(x)x:x\in \Omega\}

What is the unit normal to this radial graph?

Suppose \{e_1,\cdots,e_n\} is a smooth local frame on \Omega. Let \nabla be the covariant derivative on \mathbb{S}^n. Tangent space of S consists of \{\nabla_{e_i}\boldsymbol{F}\}_{i=1}^n which are

\nabla_{e_i}\boldsymbol{F}=v(x)e_i+e_i(v)\cdot x

In order to get the unit normal, we need some simplification. Let us assume \{e_i\} are orthonormal basis of the tangent space of \Omega and \nabla v=e_1(v)e_1. Then

\nabla_{e_1}\boldsymbol{F}=v(x)e_1+e_1(v)x, \quad \nabla_{e_i}\boldsymbol{F}=v(x)e_i, \quad i\geq 2

Then we obtain an orthonormal basis of the tangent of S

\{\frac{1}{\sqrt{v^2+|\nabla v|^2}}\nabla_{e_1}\boldsymbol{F},\nabla_{e_2}\boldsymbol{F},\cdots,\nabla_{e_n}\boldsymbol{F}\}

We are able to get the normal by projecting x to this subspace

\nu=x-\frac{1}{v^2+|\nabla v|^2}\langle x,\nabla_{e_1}\boldsymbol{F}\rangle\nabla_{e_1}\boldsymbol{F}=\frac{v^2x-v\nabla v}{v^2+|\nabla v|^2}.

After normalization, the (outer)unit normal can be written

    \frac{vx-\nabla v}{\sqrt{v^2+|\nabla v|^2}}

Remark: Guan, Bo and  Spruck, Joel. Boundary-value Problems on \mathbb{S}^n for Surfaces of Constant Gauss Curvature.

One example of blowing up corner

Consider {u(x,y)=\sqrt{x^2+y^4}} on {\mathbb{R}^2_+=\{(x,y):x\geq 0, y\geq 0\}}. Notify {\mathbb{R}^2_+} has a corner at the origin and {u} is not smooth at the origin. {u\approx x} when {x\geq y^2} and {u\approx y^2} when {x\leq y^2}. We want to resolve {u} by blowing up the origin through a map {\beta}. After blowing up, {W} looks like the following picture.



Denote {W=[\mathbb{R}^2_+,(0,0)]} and {\beta:W\rightarrow \mathbb{R}^2_+} is the blow down map. On {W\backslash lb}(near A), {\beta} takes the form

\displaystyle \beta_1(\xi_1,\eta_1)=(\xi_1^2,{\xi_1\eta_1})

where {\xi_1} is the boundary defining function for ff and {\eta_1} is boundary defining function for rb. Similarly on {W\backslash rb}(near B), {\beta} takes the form

\displaystyle \beta_2(\xi_2,\eta_2)=(\xi_2\eta^2_2,\eta_2)

where {\xi_2} is a bdf for lb and {\eta_2} is a bdf for ff. One can verify that {\beta} is a diffeomorphism {\mathring{W}\rightarrow \mathring{\mathbb{R}}^2_+}. Let {w=\beta^* u}. Then {w} is a polyhomogeneous conormal function on {W}. Its index can be denoted {(E,F,H)} correspond to lb, ff and rb.

\displaystyle E=\{(n,0)\}, F=\{(2n,0)\}, H=\{(2n,0)\}

Suppose {\pi_1} is the projection to {x} coordinate. Consider {f=\pi_1\circ \beta:W\rightarrow \mathbb{R}_+}, {f} is actually a {b-}fibration. Then the push forward map {f_*} maps {w} to a polyhomogeneous function on {\mathbb{R}^+}.

\displaystyle f_*w=\pi_* u=\int_0^\infty u(x,y)dy

In order to make {u} is integrable, let us assume {u} support {x\leq 1} and {y\leq 1}. What is the index for {f_* w} on {\mathbb{R}^+}?

\displaystyle \int_0^1\sqrt{x^2+y^4}dy=\int_0^{\sqrt{x}}\sqrt{x^2+y^4}dy+\int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy

For the first integral, letting {y^2/x=t}

\displaystyle \int_0^{\sqrt{x}}\sqrt{x^2+y^4}dy=x\sqrt{x}\int_0^1\sqrt{1+t^4}dt=c_0x\sqrt{x}

For the second integral, letting {x/y^2=t}

\displaystyle \int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy=\frac{1}{2}x\sqrt{x}\int_x^1t^{-\frac{5}{2}}\sqrt{t^2+1}dt

Since the Taylor series

\displaystyle \sqrt{1+t^2}=1+\frac{1}{2}t^2-\frac{1}{8}t^4+\cdots,\quad \text{for }|t|<1


\displaystyle \int_{\sqrt{x}}^1\sqrt{x^2+y^4}dy=a_0+a_1x+a_2x\sqrt{x}+\cdots

Combining all the above analysis, the index for {f_*w} is {\{(n,0)\}\cup \{\frac{n}{2},0\}}

From another point of view, the vanishing order of {f} on each boundary hypersurface of {W} are {e_f(lb)=1}, {e_f(\text{ff})=2} and {e_f(rb)=0}. {f} maps lb and ff to the boundary of {\mathbb{R}^+}. Therefore the index of {f_*w} is contained in

\displaystyle \frac{1}{e_f(lb)}E\overline{\cup}\frac{1}{e_f(\text{ff})}F=E\overline{\cup}\frac{1}{2}F

Remark: Daniel Grieser, Basics of {b-}Calculus.

Bach flat four dimensional manifold and sigma2 functional

We want to find the necessary condition of being the critical points of {\int\sigma_2} on four dimensional manifold.

1. Preliminary

Suppose {(M^n,g)} is a Riemannian manifold with {n=4}. {P_g} is the Schouten tensor

\displaystyle P_g=\frac{1}{n-2}\left(Ric-\frac{R}{2(n-1)}g\right)

and denote {J=\text{\,Tr\,} P_g}. Define

\displaystyle \sigma_2(g)=\frac{1}{2}[(\text{\,Tr\,} P_g)^2-|P_g|_g^2]

\displaystyle I_2(g)=\int_M \sigma_2(g)d\mu_g

where {|P|_g^2=\langle P,P\rangle_g}. It is well known that {I_2(g)} is conformally invariant.

Suppose {g(t)=g+th} where {h} is a symmetric 2-tensor. We want to calculate the first derivative of {I_2(g(t))} at {t=0}. To that end, let us list some basic facts (see the book of Toppings). Firstly denote {(\delta h)_j=-\nabla^i{h_{ij}}} the divergence operator and

\displaystyle G(h)=h-\frac{1}{2}(\text{\,Tr\,} h) g

\displaystyle (\Delta_L h)_{ij}=(\Delta h)_{ij}-h_{ik}Ric_{jl}g^{kl}-h_{jk}Ric_{il}g^{kl}+2R_{ikjl}h^{kl}

where {\Delta_L} is the Lichnerowicz Laplacian. Then the first variation of Ricci curvature and scalar curvature are

\displaystyle \dot{R}=\delta^2h-\Delta(\text{\,Tr\,} h)-\langle h,Ric\rangle \ \ \ \ \ (1)

\displaystyle \dot{Ric}=-\frac{1}{2}\Delta_Lh-\frac{1}{2}L_{(\delta G(h))^\sharp}g=-\frac{1}{2}\Delta_Lh-\frac{1}{2}L_{(\delta h)^\sharp}g-\frac{1}{2}Hess(\text{\,Tr\,} h)

\displaystyle =-\frac{1}{2}\Delta_Lh-d(\delta h)-\frac{1}{2}Hess(\text{\,Tr\,} h)

where we were using upper dot to denote the derivative with respect to {t}.

2. First variation of the sigma2 functional

Lemma 1 {(M^4,g)} is a critical point of {I_2(g)} if and only if

\displaystyle \Delta P-Hess(J)+2\mathring{Rm}(P)-2JP-|P|_g^2g=0 \ \ \ \ \ (2)

where {(\mathring{Rm}(P))_{ij}=R_{ikjl}P^{kl}}.


\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\int_M J\dot J-\langle\dot P,P\rangle+\langle h,P\wedge P\rangle+\frac{1}{2}\sigma_2\text{\,Tr\,} h \,d\mu_g

where {(P\wedge P)_{ij}=P_{ik}P_{jl}g^{kl}}. Since we have

\displaystyle \int_M\langle P,\dot P\rangle\\ =\frac{1}{n-2}\int_M\langle P, \dot Ric-\dot Jg-Jh\rangle =\frac{1}{n-2}[\langle P, \dot Ric\rangle-\dot J J-J\langle h,P\rangle]

\displaystyle =\frac{1}{n-2}[-\frac{1}{2}\langle h,\Delta_L P\rangle+\langle h,Hess(J)\rangle-\frac{1}{2}\Delta J \text{\,Tr\,} h-\dot J J-J\langle h,P\rangle]

Plugging this into the derivative of {I_2} to get

\displaystyle (n-2)\frac{d}{dt}\big|_{t=0} I_2(g(t))\\ =\int_M\frac{1}{2}\langle h,\Delta_L P\rangle-\langle h,Hess(J)\rangle+\frac{1}{2}\Delta J \text{\,Tr\,} h\\

\displaystyle \quad +(n-1)\dot J J+J\langle h,P\rangle+(n-2)\langle h,P\wedge P\rangle+\frac{n-2}{2}\sigma_2\text{\,Tr\,} h d\mu_g

In order to simplify the above equation, we recall the definition of Lichnerowicz Laplacian {\Delta_L}

\displaystyle (\Delta_LP)_{ij}=(\Delta P)_{ij}-2P_{ik}Ric_{jl}g^{kl}+2R_{ikjl}P^{kl}

\displaystyle =(\Delta P)_{ij}-2(n-2)P_{ik}P_{jl}g^{kl}-2JP_{ij}+2R_{ikjl}P^{kl}

Apply (1) to get

(n-1)\dot J J=\frac12J\dot R=\frac12J[\delta^2h-\Delta(\text{\,Tr\,} h)-\langle h,Ric\rangle]
=\frac{1}{2}[\langle h, Hess(J)\rangle-\text{\,Tr\,} h\Delta J-(n-2)J\langle h, P\rangle-J^2\text{\,Tr\,} h]

Therefore we can simplify it to be

\displaystyle (n-2)\frac{d}{dt}\big|_{t=0} I_2(g(t)) =\int_M\frac{1}{2}\langle h,\Delta P\rangle-\frac{1}{2}\langle h, Hess(J)\rangle+h^{ij}R_{ikjl}P^{kl}

\displaystyle -\frac{n-2}{2}J\langle h,P\rangle-\frac{1}{2} J^2 \text{\,Tr\,} h+\frac{n-2}{2}\sigma_2\text{\,Tr\,} h d\mu_g

Let us denote {(\mathring{Rm}(P))_{ij}=R_{ikjl}P^{kl}}. Using the fact {n=4} and the definition of {\sigma_2},

\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\frac{1}{4}\int_M\langle h,Q\rangle d\mu_g


\displaystyle Q=\Delta P-Hess(J)+2\mathring{Rm}(P)-2JP-|P|_g^2g


Remark 1 It is easy to verify {\text{\,Tr\,} Q=0}, this is equivalent to say {I_2} is invariant under conformal change. More precisely, letting {h=2ug}, then

\displaystyle \frac{d}{dt}\big|_{t=0} I_2(g(t))=\frac{1}{4}\int_M\langle h,Q\rangle d\mu_g=\frac{1}{2}\int_M u\text{\,Tr\,} Q d\mu_g=0.

Remark 2 If {g} is an Einstein metric with {Ric=2(n-1)\lambda g}, then {P=\lambda g}, {J=n\lambda} and

\displaystyle \mathring{Rm}(P)=\lambda Ric=2(n-1)\lambda^2 g

It is easy to verify that {Q=0}. In other words, Einstein metrics are critical points of {I_2}.

Are there any non Einstein metric which are critical points of {I_2}?

Here is one example. Suppose {M=\mathbb{S}^2\times N}, where {\mathbb{S}^2} is the sphere with standard round metric and {(N,g_N)} is a two dimensional compact manifolds with sectional curvature {-1}. {M} is endowed with the product metric. We can prove {Ric=g_{S^2}-g_N}, {P=\frac{1}{2}g_{S^2}-\frac{1}{2}g_N}, {J=0}, {\mathring{Rm}(P)=g_{prod}} and consequently {Q=0}.

Note that the above example is a locally conformally flat manifold. For this type of manifold, we have the following lemma which can say

Lemma 2 Suppose {g} is locally conformally flat and {Q=0}, then

Proof: When {g} is locally conformally flat,

\displaystyle \mathring{Rm}(g)=JP+|P|_g^2g-2P\wedge P

{Q=0} is equivalent to

\displaystyle \Delta P-Hess(J)+|P|_g^2g-4P\wedge P=0

Actually this is equivalent to the Bach tensor {B} is zero. \Box

3. Another point of view

We have the Euler Characteristic formula for four dimensional manifolds

\displaystyle 8\pi^2\chi(M)=\int_M (|W|_g^2+\sigma_2) d\mu_g

therefore the critical points for {\int_M \sigma_2d\mu_g} will be the same as the critical points of {\int_M |W|_g^2d\mu_g}. However, the functional

\displaystyle g\rightarrow \int_M |W|_g^2d\mu_g

is well studied by Bach. The critical points of this functional satisfy Bach tensor equal to 0.

\displaystyle B_{ij}=\nabla^k\nabla^l W_{likj}+\frac{1}{2}Ric^{kl}W_{likj}

Obviously, {B=0} for Einstein metric, but not all Bach flat metrics are Einstein. For example {B=0} for any locally conformally flat manifolds.

Bubble functions under different setting

Bubble function can be defined either on \mathbb{R}^n, \mathbb{S}^n or \mathbb{B}^n. For the following notations, c_n will denote suitable constants which may be different from line to line.

  • For every \epsilon>0 and  \xi\in\mathbb{R}^n, define

\displaystyle u_{\epsilon,\xi}=c_n\left(\frac{\epsilon}{\epsilon^2+|x-\xi|^2}\right)^{\frac{n-2}{2}}

It is well know that -\Delta u= c_nu^{\frac{n+2}{n-2}}. Moreover (\mathbb{R}^n,u^{\frac{4}{n-2}}_{\epsilon,\xi}g_E) is isometric to the standard sphere minus one point.

  • For any a\in \mathbb{S}^n and \lambda>0 define

\displaystyle\delta(a,\lambda)=c_n\left(\frac{\lambda}{\lambda^2+1+(\lambda^2-1)\cos d(a,x)}\right)^{\frac{n-2}{2}}

where d(a,x) is the geodesic distance of a and x on \mathbb{S}^n. Actually \cos d(a,x)=a\cdot x

  • For each p\in \mathbb{B}^{n+1}, define \delta_p(x):\mathbb{S}^n\to \mathbb{R} by


Both the second and third one satisfy

\displaystyle \frac{4(n-1)}{n-2}\Delta_{\mathbb{S}^n}\delta-n(n-1)\delta+c_n\delta^{\frac{n-2}{n+2}}=0

If we make p=\frac{\lambda-1}{\lambda+1}a, the third one will be changed to the second one.

To get the second one from the first one, let us deonte \Phi_a:\mathbb{S}^n\to \mathbb{R}^n be the stereographic projection from point a. Then

\displaystyle \delta(a,\lambda)\circ \Phi^{-1}_a=c_n\left(\frac{\lambda(1+|y|^2)}{\lambda^2|y|^2+1}\right)^{\frac{n-2}{2}}=c_nu_{\lambda,0}u_{1,0}^{-1}

It should be able to see the third one from hyperbolic translation directly.

Unique continuation property on the boundary

I am writing a theorem proved by Jin Zhiren in his thesis.


Suppose \Omega is a smooth domain in \mathbb{R}^n, x_0\in \partial \Omega and u is a harmonic function in \Omega. If there exists A, b>0 such that

\displaystyle |u(x)|\leq Ae^{-\frac{b}{|x-x_0|}}\quad x\in \Omega

for |x-x_0| small, then u=0. If n=2, the same conclusion holds for the solutions of a general second order linear elliptic equation.

A borderline example for this theorem is u be the real part of e^{-1/z^\alpha}, \alpha\in (0,1). u is harmonic in the right half plane and u\leq Ae^{-1/|x|^\alpha} and consequently D^\beta u(0)=0.





Interior estimate for Monge Ampere equation

Suppose we have u is a generalized solution of the Monge-Ampere equation

\det(\nabla^2 u)=1 \text{ in } B_1\subset\mathbb{R}^n

when n=2, Heinz proved

    |\nabla^2 u|_{B_{1/2}}\leq \sup_{B_1}u

when n\geq 3, Pogorelov has a counter example. One can have a solution u\in C^1(B_1), but u\in C^{1,\beta}(B_1) for some \beta\in (0,1). See his book The Minkowski Multidimensional Problem, on page 83.